Seting up remote access to Frigate NVR with Nginx Proxy Manager LXC on Proxmox

This took me a little while to piece together, so I thought I’d write it up here in case it’s of use to anyone else, or if I ever need to go through it again….

Background

I use Frigate to to access and manage my home CCTV cameras. It is awesome, and I would like to be able to access it securely from outside my local network/LAN.

I also use HomeAssistant (“HA”) to process the feeds and notifications from Frigate, but would like to directly access the Frigate web UI. I’ll keep HA mostly out of this post.

Setup

A quick overview on my current setup:

Nginx Proxy Manager running on a Proxmox host as an LXC

Homeassistant also on Proxmox but as a VM (HAOS)

– Frigate and MQTT run as Docker containers on Ubuntu, on an old HP Prodesk. I may eventually migrate these over to Proxmox too, but they are working happily on this device and there may be issue migrating them to a VM or LXC due to harware; I use a USB Coral TPU for processing, and while I know you can pass that through to an LXC or VM, I haven’t gotten around to it.

Installing Nginx Proxy Manager on Proxmox

Thanks to Proxmox and the amazing community scripts, this was very quick and easy. I used this script to deploy it as an LXC:

https://community-scripts.github.io/ProxmoxVE/scripts?id=nginxproxymanager

When that was completed I opened up a firewall rule on my router to allow traffic via HTTPS/443 to the new Nginx LXC’s address.

Configure Nginx Proxy Manager and Frigate

The next step – and the crux of this post – was to setup Nginx Proxy Manager to allow access through to Frigate and handle authentication:

  • create a new Proxy Host

This is reasonably simple; specify a domain name that resolves to your host/router, then set the local IP your Frigate runs on and the port. I gather Websocket Suport is required, and you only need HTTPS here if your Frigate endpoint is using it. Nginx will serve this connection as HTTPS once setup to do so.

After some googling I found the following Nginx config was also recommended:

Once done, you should have an “Online” Proxy Host combining your domain name, your Frigate (destination) IP & listening port, with SSL option (I use Let’s Encrypt):

  • A simple Access List was defined prior to the above, just containing a user & password set under ‘Athorisation’. You will need to use these credentials to log in.
  • Frigate updates for TLS?
  • The trusted_proxies below were also recommended, but I didn’t need them in my case:


When I eventually got things working using port 8971 (instead of 5000) I was prompted for a login by Frigate, but I hadn’t set up auth in Frigate, just Nginx.

Nginx has the option to pass auth through to the destination, which may be nice, but for now I just disabled the feature in Frigate and after a restart things worked as expected, with the basic Nginx auth only:

auth:
  enabled: False
tls:
  enabled: false

It may be better/safer/nicer to have the auth passed through, enabled and managed in Frigate, along with TLS, but I haven’t done so yet.

  • port issues – 5000 or 8971?

When I was testing this I started off using port 8971 which is recommended here:
https://docs.frigate.video/configuration/authentication

This didn’t work for me; I then discovered I couldn’t connect to that port at all (even locally) so I went with 5000 initially as I knew that did work locally at least.

Eventually I realised that I’d never needed or opened up that port to my Frigate container! I updated my config to map port 8971 to 8971:

-p 8971:8971 

after that little oversight was corrected, it worked correctly!

When testing via a Browser (behind a VPN to emulate external access) I was prompted once for a login and then everything just worked; perfect!

I then went to check via my mobile phone, and that kept asking me to log in, with the message “Authorization required”


This was fixed by updating the Nginx Access List and setting “Satisfy Any” to be On/checked. That small change seems to have sorted the issue and everything now works perfectly on my phone too.

Integrating Solana with GitHub Workflows for Enhanced CI/CD

Intro

Being a fan of Solana and interested in exploring and using the technology, I wanted to find some practical use for it in my role as a DevOps Engineer.

This post attempts to do that, by integrating Solana in to a CI/CD workflow to provide an audit of build artefacts. Yes, there are many other ways & tools you could do this, but I found this particular combination interesting.

Overview

Solana is a high-performance blockchain platform known for its speed and scalability.

Integrating Solana with GitHub Workflows can bring a new level of security, transparency, and efficiency to your CI/CD pipelines.

This blog post demonstrates how to leverage Solana in a GitHub Workflow to enhance your development and deployment processes.

What is Solana?

Solana is a decentralised blockchain platform designed for high throughput and low latency. It supports smart contracts and decentralized applications (dApps) with a focus on scalability and performance. Solana’s unique consensus mechanism, Proof of History (PoH), allows it to process thousands of transactions per second.

Why Integrate Solana with GitHub Workflows?

Integrating Solana with GitHub Workflows can provide several benefits:

  • Immutable Build Artifacts: Store cryptographic hashes of build artifacts on the Solana blockchain to ensure their integrity and immutability.
  • Automated Smart Contract Deployment: Use Solana smart contracts to automate deployment processes.
  • Transparent Audit Trails: Record CI/CD pipeline activities on the blockchain for transparency and auditability.

Setting Up Solana in a GitHub Workflow

Let’s walk through an example of how to integrate Solana with a GitHub Workflow to store build artifact hashes on the Solana blockchain.

Step 1: Install Solana CLI

Ensure you have the Solana CLI installed on your local machine or CI environment:

sh -c "$(curl -sSfL https://release.solana.com/v1.8.0/install)"
Step 2: Set Up a Solana Wallet

Then, you need a Solana wallet to interact with the blockchain. You can use the Solana CLI to create a new wallet:

solana-keygen new --outfile ~/my-solana-wallet.json

This command generates a new wallet and saves the keypair to ~/my-solana-wallet.json.

Step 3: Create a GitHub Workflow

Create a new GitHub Workflow file in your repository at .github/workflows/solana.yml:

name: Solana Integration

on:
  push:
    branches:
      - main

jobs:
  build:
    runs-on: ubuntu-latest

    steps:
      - name: Checkout code
        uses: actions/checkout@v2

      - name: Set up Solana CLI
        run: |
          sh -c "$(curl -sSfL https://release.solana.com/v1.8.0/install)"
          export PATH="/home/runner/.local/share/solana/install/active_release/bin:$PATH"
          solana --version

      - name: Build project
        run: |
          # Replace with your build commands
          echo "Building project..."
          echo "Build complete" > build-artifact.txt

      - name: Generate SHA-256 hash
        run: |
          sha256sum build-artifact.txt > build-artifact.txt.sha256
          cat build-artifact.txt.sha256

      - name: Store hash on Solana blockchain
        env:
          SOLANA_WALLET: ${{ secrets.SOLANA_WALLET }}
        run: |
          echo $SOLANA_WALLET > ~/my-solana-wallet.json
          solana config set --keypair ~/my-solana-wallet.json
          solana airdrop 1
          HASH=$(cat build-artifact.txt.sha256 | awk '{print $1}')
          solana transfer <RECIPIENT_ADDRESS> 0.001 --allow-unfunded-recipient --memo "$HASH"
Step 4: Configure GitHub Secrets

To securely store your Solana wallet keypair, add it as a secret in your GitHub repository:

  1. Go to your repository on GitHub.
  2. Click on Settings.
  3. Click on Secrets in the left sidebar.
  4. Click on New repository secret.
  5. Add a secret with the name SOLANA_WALLET and the content of your ~/my-solana-wallet.json file.
Step 5: Run the Workflow

Push your changes to the main branch to trigger the workflow. The workflow will:

  1. Check out the code.
  2. Set up the Solana CLI.
  3. Build the project.
  4. Generate a SHA-256 hash of the build artifact.
  5. Store the hash on the Solana blockchain.

Example Output and Actions

After the workflow runs, you can verify the transaction on the Solana blockchain using a block explorer like Solscan. The memo field of the transaction will contain the SHA-256 hash of the build artifact, ensuring its integrity and immutability.

Example Output:
Run sha256sum build-artifact.txt > build-artifact.txt.sha256
b1946ac92492d2347c6235b4d2611184a1e3d9e6 build-artifact.txt
Run solana transfer <RECIPIENT_ADDRESS> 0.001 --allow-unfunded-recipient --memo "b1946ac92492d2347c6235b4d2611184a1e3d9e6"
Signature: 5G9f8k9... (shortened for brevity)
Possible Actions:
  • Verify Artifact Integrity: Use the stored hash to verify the integrity of the build artifact before deployment.
  • Audit Trail: Maintain a transparent and immutable audit trail of all build artifacts.
  • Automate Deployments: Extend the workflow to trigger automated deployments based on the stored hashes.

Conclusion

Integrating Solana with GitHub Workflows provides a powerful way to enhance the security, transparency, and efficiency of your CI/CD pipelines.

By leveraging Solana’s blockchain technology, you can ensure the integrity and immutability of your build artifacts, automate deployment processes, and maintain transparent audit trails.

I have used solutions similar to this previously; by automatically adding a containers hash to an immutable database when it passes testing, while at the same time ensuring that the only images permissable for deployment in the next environment up (e.g. Production) exist on that list, you can (at least help to) ensure that only approved code is deployed.

If you’d like to learn more about Solana they have some great documentation and examples: https://solana.com/docs/intro/quick-start

Enhancing CI/CD Pipelines with Immutable Build Artifacts Using Crypto Technologies

Intro:

In the ever-evolving landscape of software development, ensuring the integrity and security of build artifacts is paramount. As CI/CD pipelines become more sophisticated, integrating cryptocurrency technologies can provide a robust solution for managing and securing build artifacts. This blog post delves into the concept of immutable build artifacts and how crypto technologies can enhance CI/CD pipelines.

Understanding CI/CD Pipelines

CI/CD pipelines are automated workflows that streamline the process of integrating, testing, and deploying code changes. They aim to:

  • Continuous Integration (CI): Automatically integrate code changes from multiple contributors into a shared repository, ensuring a stable and functional codebase.
  • Continuous Deployment (CD): Automatically deploy integrated code to production environments, delivering new features and fixes to users quickly and reliably.

The Importance of Immutable Build Artifacts

Build artifacts are the compiled binaries, libraries, and other files generated during the build process. Ensuring these artifacts are immutable—unchangeable once created—is crucial for several reasons:

  • Security: Prevents tampering and unauthorized modifications.
  • Reproducibility: Ensures that the same artifact can be deployed consistently across different environments.
  • Auditability: Provides a clear and verifiable history of artifacts.

Leveraging Crypto Technologies for Immutable Build Artifacts

Cryptocurrency technologies, particularly blockchain, offer unique advantages for managing build artifacts:

  • Decentralization: Distributes data across multiple nodes, reducing the risk of a single point of failure.
  • Immutability: Ensures that once data is written, it cannot be altered or deleted.
  • Transparency: Provides a transparent and auditable history of all transactions.

Implementing Immutable Build Artifacts in CI/CD Pipelines

  1. Generate Build Artifacts: During the CI process, generate the build artifacts as usual.
   # Example: Building a Docker image
   docker build -t my-app:latest .
  1. Create a Cryptographic Hash: Generate a cryptographic hash (e.g., SHA-256) of the build artifact to ensure its integrity.
   # Example: Generating a SHA-256 hash of a Docker image
   docker save my-app:latest | sha256sum
  1. Store the Hash on a Blockchain: Store the cryptographic hash on a blockchain to ensure immutability and transparency.
   # Example: Using a blockchain-based storage service
   blockchain-store --hash <generated-hash> --metadata "Build #123"
  1. Retrieve and Verify the Hash: When deploying the artifact, retrieve the hash from the blockchain and verify it against the artifact to ensure integrity.
   # Example: Verifying the hash
   retrieved_hash=$(blockchain-retrieve --metadata "Build #123")
   echo "<artifact-hash>  my-app.tar.gz" | sha256sum -c -

Example Workflow

  1. CI Pipeline:
  • Build the artifact (e.g., Docker image).
  • Generate a cryptographic hash of the artifact.
  • Store the hash on a blockchain.
  1. CD Pipeline:
  • Retrieve the hash from the blockchain.
  • Verify the artifact’s integrity using the retrieved hash.
  • Deploy the verified artifact to the production environment.

Benefits of Using Immutable Build Artifacts

  • Enhanced Security: Blockchain’s immutable nature ensures that build artifacts are secure and tamper-proof.
  • Improved Reproducibility: Immutable artifacts guarantee consistent deployments across different environments.
  • Increased Transparency: Blockchain provides a transparent and auditable history of all build artifacts.

Conclusion

Integrating cryptocurrency technologies with CI/CD pipelines to manage immutable build artifacts offers a range of benefits that enhance security, reproducibility, and transparency. By leveraging blockchain’s decentralized and immutable nature, organizations can ensure the integrity and authenticity of their build artifacts, providing a robust foundation for their CI/CD processes.

As the software development landscape continues to evolve, embracing these cutting-edge technologies will be crucial for maintaining a competitive edge and ensuring the reliability and security of software deployments. By implementing immutable build artifacts, organizations can build a more secure and efficient CI/CD pipeline, paving the way for future innovations.

ArgoCD and K8sGPT with KinD

This post covers a lot (very quickly and reasonably easily);

It starts with using Kuberenets in Docker (KinD) to create a minimal but functional local Kubernetes Cluster.
Then, ArgoCD is setup and a sample app is deployed to the cluster.
Finally, k8sgpt is configured and a basic analysis of the cluster is run.

The main point of all of this was to try out k8sgpt in a safe and disposable environment.

Step 1: Install kind

First, ensure you have kind installed.

KinD can be installed quickly and easily with just the following commands:

curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.17.0/kind-linux-amd64
chmod +x ./kind
sudo mv ./kind /usr/local/bin/kind

Check out this older post for more detail on KinD:
https://www.donaldsimpson.co.uk/2023/08/09/kind-local-kubernetes-with-docker-nodes-made-quick-and-easy/

Step 2: Create a kind Cluster

Create a new kind cluster:

kind create cluster --name argocd-cluster

Step 3: Install kubectl

Ensure you have kubectl installed. You can install it using the following command:

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
chmod +x kubectl
sudo mv kubectl /usr/local/bin/

Step 4: Install ArgoCD

  1. Create the argocd namespace:
kubectl create namespace argocd
  1. Install ArgoCD using the official manifests:
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml

Step 5: Access the ArgoCD API Server

  1. Forward the ArgoCD server port to localhost:
kubectl port-forward svc/argocd-server -n argocd 8080:443
  1. Retrieve the initial admin password:
kubectl get secret argocd-initial-admin-secret -n argocd -o jsonpath="{.data.password}" | base64 -d; echo

Step 6: Login to ArgoCD

  1. Open your browser and navigate to https://localhost:8080.
  2. Login with the username admin and the password retrieved in the previous step.

Step 7: Install argocd CLI

  1. Download the argocd CLI:
curl -sSL -o argocd https://github.com/argoproj/argo-cd/releases/latest/download/argocd-linux-amd64
chmod +x argocd
sudo mv argocd /usr/local/bin/
  1. Login using the argocd CLI:
argocd login localhost:8080
  1. Set the admin password (optional):
argocd account update-password

Step 8: Deploy an Application with ArgoCD

  1. Create a new application:
argocd app create guestbook \
    --repo https://github.com/argoproj/argocd-example-apps.git \
    --path guestbook \
    --dest-server https://kubernetes.default.svc \
    --dest-namespace default
  1. Sync the application:
argocd app sync guestbook
  1. Check the application status:
argocd app get guestbook

Step 9: Install K8sGPT

  1. Install K8sGPT CLI:
curl -Lo k8sgpt https://github.com/k8sgpt-ai/k8sgpt/releases/latest/download/k8sgpt-linux-amd64
chmod +x k8sgpt
sudo mv k8sgpt /usr/local/bin/
  1. Configure K8sGPT:
k8sgpt auth --kubeconfig ~/.kube/config

Step 10: Inspect the Cluster with K8sGPT

  1. Run K8sGPT to inspect the cluster:
k8sgpt analyze

Example Output and Possible Associated Actions

Example Output:

[INFO] Analyzing cluster…

[INFO] Found 3 issues in namespace default:

[WARNING] Pod guestbook-frontend-5d8d4f5d6f-abcde is in CrashLoopBackOff state

[WARNING] Service guestbook-frontend is not reachable

[INFO] Deployment guestbook-frontend has 1 unavailable replica

Associated Actions:

  1. Pod in CrashLoopBackOff State:
    • Action: Check the logs of the pod to identify the cause of the crash.
    • Command: kubectl logs guestbook-frontend-5d8d4f5d6f-abcde -n default
    • Possible Fix: Resolve any issues found in the logs, such as missing environment variables, incorrect configurations, or application errors.
  2. Service Not Reachable:
    • Action: Verify the service configuration and ensure it is correctly pointing to the appropriate pods.
    • Command: kubectl describe svc guestbook-frontend -n default
    • Possible Fix: Ensure the service selector matches the labels of the pods and that the pods are running and ready.
  3. Deployment with Unavailable Replica:
    • Action: Check the deployment status and events to understand why the replica is unavailable.
    • Command: kubectl describe deployment guestbook-frontend -n default
    • Possible Fix: Address any issues preventing the deployment from scaling, such as resource constraints or scheduling issues.

Conclusion

Ok, addmitedly that was a bit of a whirlwind, but if you followed it you have successfully deployed ArgoCD to a kind cluster, deployed an application using ArgoCD to that new cluster, then inspected the cluster & app using K8sGPT.

The example output and associated actions from provide guidance on how to address common issues identified by K8sGPT.

This setup allows you to manage your applications and monitor the health of your Kubernetes cluster effectively, and being able to spin up a disposable cluster like this is handy for many reasons.

Frigate – object detection and notifications

Intro

My notes on setting up Frigate NVR for a home CCTV setup.

The main focus of this post is on object detection (utilising a Google Coral TPU) and configuring notifications to Amazon Fire TVs (and other devices) via intregration with HomeAssistant.

There’s a lot to cover and no point in reproducing the existing documentation, you can find full details & info on setting up the main components here:

ZoneMinder
Google Coral Edge TPU
Frigate
HomeAssistant

Background

I used Zoneminder for many years to capture and display my home CCTV cameras. There are several posts – going back to around 2016 – on this site under the ZoneMinder category here

This worked really well for me all that time, but I was never able to setup Object Detection in a way I liked – it can be done in a number of different ways, but everything I tried out was either very resource intensive, required linking to Cloud services like TensorFlow for processing, or was just too flaky and unreliable. It was fun trying them out, but none of them ever suited my needs. Integration and notification options were also possible, but were not straightforward.

So, I eventually took the plunge and switched to Frigate along with HomeAssistant. There was a lot to learn and figure out, so I’m posting some general info here in case it helps other people – or myself in future when I wonder why/how I did things this way….

Hardware

I have 4 CCTV cameras, these are generic and cheap 1080p Network IP cameras, connected via Ethernet. I don’t permit them any direct access to the Internet for notifications, updates, event analysis or anything.

I ran ZoneMinder (the server software that manages and presents the feeds from the cameras) on various hardware over the years, but for the Frigate and HomeAssistant setup I have gone for an energy-efficient and quiet little “server” – an HP ProDesk 600 G1 Mini – it’s very very basic and very low powered… and cost £40 on eBay:

After testing Object Detection using the CPU (this is waaaay too much load for the CPU to cope with longer-term, but really helps to test proves the concept) I have since added a Google Coral Edge TPU to the host via USB. This enables me to offload the detection/inference work to the TPU and spare the little CPU’s energy for other tasks:

Objectives

My key goals here were to:

  1. Setup and trial Frigate – to see if it could fit my requirements and replace ZoneMinder
  2. Add Object Detection – without having to throw a lot of hardware at it or use Cloud Services like TensorFlow
  3. Integrate with HomeAssistant – I’d been wanting to try this for a while, to integrate my HomeKit devices with other things like Sonos, Amazon Fire TVs, etc

Note that you do not need to use HomeAssistant or MQTT in order to use or try Frigate, it can run as a standalone insatnce if you like. Frigate also comes with its own web interface which is very good, and I run this full-screen/kiosk mode on one of my monitors.

Setup and trial Frigate: setting up Frigate was easy, I went for Ubuntu on my host and installed Docker on that, then configured Frigate and MQTT containers to communicate. These are both simply declared in the Frigate config like this:

mqtt:
  host: 192.168.0.27
detectors:
  coral:
    type: edgetpu
    device: usb

Add Object Detection: with Frigate, this can be done by a Google Coral Edge TPU (pic above) – more info here: https://coral.ai/products/accelerator/ and details on my config below. I first trialled this using the host CPU and it ‘worked’ but was very CPU intensive: adding the dedicated TPU makes a massive difference and inference speeds are usually around 10ms for analysis of 4 HD feeds. This means the host CPU is free to focus on running other things (which is just as well given the size of the thing).

    objects:
      track:
        - person
        - dog
        - car
        - bird
        - cat

https://docs.frigate.video/configuration/objects

Integrate with HomeAssistant : Added the HomeAssistant Docker instance to my host, then ran and configured MQTT container for Frigate then configured Frigate + HomeAssistant to work together. This was done by first installing HACS in HA, then using the Frigate Integration as explained here:
https://docs.frigate.video/integrations/home-assistant/

Setup Notifications

Phone notifications – I have previosuly had (and posted about my) issues with CGNAT and expected I would need to set up and ngrok tunnel and certs and jump through all sorts of hoops to get HA working remotely.

HA offers a very simple Cloud Integration via https://www.nabucasa.com/

I trialled this and was so impressed I have already signed up for a year – it’s well worth it for me and makes things much simpler. Phone notifications can be setup under HomeAssistant > Settings > Automations and Scenes > Frigate Notifications – after installing the Frigate Notifications Bueprint via HACS.

I can now open HomeAssistant on my phone from anywhere in the World and view a dashboard that has live feeds from my CCTV cameras at home. I have also set it up to show recently detected objects from certain cameras too.


Amazon FireTV notifications – I have just setup the sending of notifications to the screen of my Amazon Fire TV, this was done by first installing this app on the device:
https://www.amazon.com/Christian-Fees-Notifications-for-Fire/dp/B00OESCXEK
Then installing
https://www.home-assistant.io/integrations/nfandroidtv/
on HA and configuring Notifications as described there. I now get a pop-up window on my projector screen whenever there’s someone at my front gate.

This is a quick (and poor quality) pic of my projector screen (and chainsaw collection) with an Amazon Fire TV 4k displaying a pop-up notification in the bottom-right corner:

This means I now don’t need to leave a monitor on showing my CCTV feeds any more, as I am notified either via my mobile or on screen. And my notifications are only set up for specific object types – people & cars, and not for things it picks up frequently that I don’t want to be alerted on, like birds or passing sheep or cows.

Minor Apple Watch update – these notifications are also picked up on my Apple Watch, which is set to display my phone notifications. So I also get a short video clip of the key frames which is pretty awesome and works well.


My Frigate Config – here’s an example from the main “driveway” camera feed, this is the one I want to be montoring & ntoified about most. It’s using RTSP to connect, record and detect the listed object types that I am interested in:

  driveway:
    birdseye:
      order: 1  
    enabled: True
    ffmpeg:
      inputs:
        - path: rtsp://THEUSER:THEPASSWORD@192.168.0.123:554/1
          roles:
            - detect
            - rtmp
        - path: rtsp://THEUSER:THEPASSWORD@192.168.0.123:554/1
          roles:
            - record        
    detect:
      width: 1280
      height: 720
      fps: 5
      stationary:
        interval: 0
        threshold: 50  
    objects:
      track:
        - person
        - dog
        - car
        - bird
        - cat

The full 24/7 recordings are all kept (one file/hour) for a few days then deleted and can be seen via HA under
Media > Frigate > Recordings > {camera name} > {date} > {hour}

Docker container start scripts

A note of the scripts I use to start the various docker containers.

This would be much better managed under Docker Compose or something, there are plenty of examples of that online, but I’d like to look at setting all of this up on Kubernetes so leaving this as rough as it is for now.

I am also running Grafana and NodeExporter at the moment to keep an eye on the stats, although things would probably look less worrying if I wasn’t adding to the load just to monitor them:

<help!>

I’ll need to do something about that system load; it’s tempting to just get a second HP host & Coral TPU and put some of the load and half of the cameras on that – will see… a k8s cluster of them would be neat.

# Start Frigate container
docker run -d \
--name frigate \
--restart=unless-stopped \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \
--shm-size=80m \
-v /root/frigate//storage:/media/frigate \
-v /root/frigate/config.yml:/config/config.yml \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
-p 8554:8554 \
-p 8555:8555/tcp \
-p 8555:8555/udp \
ghcr.io/blakeblackshear/frigate:stable

# Start homeassistant container
docker run -d \
--name homeassistant \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-v /root/ha_files:/config \
--network=host \
ghcr.io/home-assistant/home-assistant:stable

# Start MQTT container
docker run -itd \
--name=mqtt \
--restart=unless-stopped \
--network=host \
-v /storage/mosquitto/config:/mosquitto/config \
-v /storage/mosquitto/data:/mosquitto/data \
-v /storage/mosquitto/log:/mosquitto/log \
eclipse-mosquitto

# Start NodeExporter container
docker run -d \
--name node_exporter \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-p 9100:9100 \
prom/node-exporter

# Start Grafana container
docker run -d \
--name grafana \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-p 3000:3000 \
grafana/grafana

Kind – local kubernetes with docker nodes made quick and easy

Quick notes on trying out Kind for a local and lightweight Kubernetes cluster.

The “getting started” steps for Kind are easy and well documented on the Kind site, but I didn’t find a good guide on adding the Kubernetes Dashboard to a newly created Kind cluster… I’m planning on using this as the basis for a few local projects so wanted to capture it here, plus checkout using the Lens IDE to manage and monitor a local “Kind” cluster.

As it says on the Kind website… if you have go 1.16+ and docker or podman installed go install sigs.k8s.io/kind@v0.20.0 && kind create cluster is all you need!

Here’s me doing just that to create a new kind cluster on my Mac in 21 seconds….

all very quick and very easy, and it is incredibly light on resources too.

Notes on adding the Kubernetes Dashboard to a new Kind cluster

Apply the dashboard yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml

Give it a moment or two to start up, checking with:

kubectl get pod -n kubernetes-dashboard

then create the admin user & cluster role bindings

kubectl create serviceaccount -n kubernetes-dashboard admin-user

kubectl create clusterrolebinding -n kubernetes-dashboard admin-user --clusterrole cluster-admin --serviceaccount=kubernetes-dashboard:admin-user

Next, get the auth token:

kubectl -n kubernetes-dashboard create token admin-user

Start up the local proxy

kubectl proxy

Browse to the local login endpoint here and pass it the token from above

and you should see the Kubernetes Dashboard for your (very new) Kind cluster like this…

The Kubernetes Dashboard could also be deployed via Helm:

helm install stable/kubernetes-dashboard --name my-release

or via the Lens UI (more on that below):

Setting up Lens is even simpler

Download Lens and log in:

https://k8slens.dev/

then select your “kind-kind” cluster from Lens > Catalogue > Clusters and you can see & do a whole load more with your cluster via Lens:

The missing metrics warning in Lens saying “Metrics are not available due to missing or invalid prometheus configuration.”

can be sorted by installing Prometheus using Helm via the CLI or from Lens:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm install prometheus prometheus-community/kube-prometheus-stack

Alternatively, you can enable the inbuilt Metrics options in Lens:

Either way, things should soon look much better:

Adding multiple worker nodes to a kind cluster

This can be done in Kind by defining a cluster manifest with multiple worker nodes like this:

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker
- role: worker
- role: worker

then creating the cluster specifying that file, e.g.

kind create cluster --config my-kind-cluster-config.yaml

“docker ps” should then show your multiple nodes, as will Lens:

Kubernetes Operators for Monitoring with Prometheus and Grafana Dashboards

Introduction

This post takes a look at setting up monitoring and alerting in Kubernetes, using Helm and Kubernetes Operators to deploy and configure Prometheus and Grafana.

This platform is quickly and easily deployed to the cluster using a Helm Chart, which in turn uses a Kubernetes Operator, to setup all of the required resources in an existing Kubernetes Cluster.

I’m re-using the Minikube Kubernetes cluster with Helm that was built and described in previous posts here and here, but the same steps should work for any working Kubernetes & Helm setup.

An example Grafana Dashboard for Kubernetes monitoring is then imported and we take a quick look at monitoring of Cluster components with other dashboards

Kubernetes Operators & Helm combo

K8s Operators are described ‘in plain English’ here:
https://enterprisersproject.com/article/2019/2/kubernetes-operators-plain-english

and defined by CoreOS as “a method of packaging, deploying and managing a Kubernetes application

The Operator used in this post can be seen here:

https://github.com/coreos/prometheus-operator

and this is deployed to the Cluster using this Helm Chart:

https://github.com/helm/charts/tree/master/stable/prometheus-operator

It may sound like Helm and Operators do much the same thing, but they are different and complimentary

Helm and Operators are complementary technologies. Helm is geared towards performing day-1 operations of templatization and deployment of Kubernetes YAMLs — in this case Operator deployment. Operator is geared towards handling day-2 operations of managing application workloads on Kubernetes.

from https://medium.com/@cloudark/kubernetes-operators-and-helm-it-takes-two-to-tango-3ff6dcf65619

Let’s get (re)started

I’m reusing the Minikube cluster from previous posts, so start it back up with:

minikube start

which outputs the following in the console

🎉  minikube 1.10.1 is available! Download it: https://github.com/kubernetes/minikube/releases/tag/v1.10.1
💡  To disable this notice, run: ‘minikube config set WantUpdateNotification false’

🙄  minikube v1.9.2 on Darwin 10.13.6
✨  Using the virtualbox driver based on existing profile
👍  Starting control plane node m01 in cluster minikube
🔄  Restarting existing virtualbox VM for “minikube” …
🐳  Preparing Kubernetes v1.18.0 on Docker 19.03.8 …
🌟  Enabling addons: dashboard, default-storageclass, helm-tiller, metrics-server, storage-provisioner
🏄  Done! kubectl is now configured to use “minikube”

this all looks ok, and includes the minikube addons I’d selected previously.
Now a quick check to make sure my local helm repo is up to date:

helm repo update

I then used this command to find the latest version of the stable prometheus-operator via a helm search:
helm search stable/prometheus-operator --versions | head -2

there’s no doubt a neater/builtin way to find out the latest version, but this did the job – I’m going to install 8.13.8:

install the prometheus operator using Helm, in to a new dedicated “monitoring” namespace just takes this one command:
helm install stable/prometheus-operator --version=8.13.8 --name=monitoring --namespace=monitoring

Ooops

that should normally be it, but for me, this resulted in some issues along these lines:

Error: Get http://localhost:8080/version?timeout=32s: dial tcp 127.0.0.1:8080: connect: connection refused

– looks like Helm can’t communicate with Tiller any more; I confirmed this with a simple helm ls which also failed with the same message. This shouldn’t be a problem when v3 of Helm goes “tillerless”, but to fix this quickly I simply re-enabled Tiller in my cluster via Minikube Addons:


➞  minikube addons disable helm-tiller
➞  minikube addons enable helm-tiller

verified things worked again with helm ls, then the helm install... command worked and started to do its thing…

New Operator and Namespace

Keeping an eye on progress in my k8s dashboard, I can see the new “monitoring” namespace has been created, and the various Operator components are being downloaded, started up and configured:

you can also keep an eye on progress with:
watch -d kubectl get po --namespace=monitoring

this takes a while on my machine, but eventually completes with this console output:

NOTES:
The Prometheus Operator has been installed. Check its status by running:
  kubectl –namespace monitoring get pods -l “release=monitoring”

Visit https://github.com/coreos/prometheus-operator for instructions on how
to create & configure Alertmanager and Prometheus instances using the Operator.

kubectl get po --namespace=monitoring shows the pods now running in the cluster, and for this quick example the easiest way to get access to the new Grafana instance is to forward the pods port 3000 to localhost like this:

➞  kubectl --namespace monitoring port-forward monitoring-grafana-64d4f6fcf7-t5zkv 3000:3000

(check and adjust the above to use the full/correct name of your monitoring-grafana-* pod)

Connecting to Grafana

now I can hit http://localhost:3000 and have that connect to port 3000 in the Grafana pod:


from the documentation on the Helm Chart and Operator here:

https://github.com/helm/charts/tree/master/stable/prometheus-operator

the default user for this Grafana is “admin” and the password for that user is “prom-operator“, so log in with those credentials…

Grafana Dashboards for Kubernetes

We can now use the ready-made Grafana dashboards, or add/import ones from the extensive online collection, like this one here for example: https://grafana.com/grafana/dashboards/6417 – simply save the JSON file

then go to Grafana and import it with these settings:

and you should now have a dashboard showing some pretty helpful stats on your kubernetes cluster, it’s health and resource usage:

Finally a very quick look at some of the other inbuilt dashboards – you can use and adjust these to monitor all of the components that comprise your cluster and set up alerting when limits or triggers are reached:

All done & next steps

There’s a whole lot more that can be done here, and many other ways to get to this point, but I found this pretty quick and easy.

I’ve only been looking at monitoring of k8s resources here, but you can obviously set up grafana dashboards for many other things, like monitoring your deployed applications. Many applications (and charts and operators) come with prom endpoints built in, and can easily and automatically be added to your monitoring and alerting dashboards along with other datasources.

Cheers,

Don

Kubernetes – Jenkins Pipelines with Docker Agents

This is the second post on Jenkins Pipelines on Kubernetes with Minikube, following on from the initial setup steps here:

That post went as far as having a Kubernetes cluster up and running for local development. That was primarily focused on Mac, but once you reach the point of having a running Kubernetes Cluster with kubectl configured to talk to it, the hosting platform/OS makes little difference.

This second section takes a more detailed look at running Jenkins Pipelines inside the Kubernetes Cluster, and automatically provisioning Jenkins JNLP Agents via Kubernetes, then takes an in-depth look at what we can do with all of that, with a complete working example.

This post covers quite a lot:

  • Adding Helm to the Kubernetes cluster for package management
  • Deploying Jenkins on Kubernetes with Helm
  • Connecting to the Jenkins UI
  • Setting up a first Jenkins Pipeline job
  • Running our pipeline and taking a look at the results
  • What Next

Adding Helm to the Kubernetes cluster for package management

Helm is a package manager for Kubernetes, and like Minikube it is ideal for quickly setting up development environments, plus much more if you want to. Take a look through the Helm hub to see just some of the other things it can do.

On Mac you can use brew to install the local helm component:

brew install helm

and again you can use minikube addons for the k8s cluster side – note that helm v3 removes the requirement for tiller.

minikube addons enable helm-tiller

you should then see a tiller pod start up in your Kubernetes kube-system namespace:

Before you can use Helm we first need to initialise the local Helm client, so simply run:

helm init --client-only

as our earlier minikube addons command has configured the connectivity and cluster already. Before we can use Helm to install Jenkins (or any of the many other things it can do), we need to update the local repo that contains the Helm Charts:

helm repo update

Hang tight while we grab the latest from your chart repositories…
…Skip local chart repository
…Successfully got an update from the "stable" chart repository
Update Complete.

That should be Helm setup complete and ready to use now.

Deploying Jenkins on Kubernetes with Helm

Now that Helm is setup and can speak to our k8s instance, installing 100’s of software packages suddenly becomes very simple – including, Jenkins. We’ll just give the install a friendly name “jenki” and use NodePort to simplify the networking, nothing more is required for this dev setup:

helm install --set serviceType=NodePort --name jenki stable/jenkins

obviously we’re skipping over all the for-real things you may want for a longer lived Jenkins instance, like backups, persistence, resilience, authentication and authorisation etc., but this bare-bones setup is sufficient for now.

Connect to the Jenkins UI

The Helm install should spit out some helpful info like this, explaining how to get the Jenkins Admin password and how to connect to the UI:

  1. Get your ‘admin’ user password by running:
    printf $(kubectl get secret –namespace default jenki-jenkins -o jsonpath=”{.data.jenkins-admin-password}” | base64 –decode);echo
  2. Get the Jenkins URL to visit by running these commands in the same shell:
    export POD_NAME=$(kubectl get pods –namespace default -l “app.kubernetes.io/component=jenkins-master” -l “app.kubernetes.io/instance=jenki” -o jsonpath=”{.items[0].metadata.name}”)
    echo http://127.0.0.1:8080
    kubectl –namespace default port-forward $POD_NAME 8080:8080
  3. Login with the password from step 1 and the username: admin

For more information on running Jenkins on Kubernetes, visit:
https://cloud.google.com/solutions/jenkins-on-container-engine

looking something like this in the console:


going back to the Kubernetes Dashboard we can now see the “jenki” Jenkins deployment in the default namespace:

and you can monitor the pods via the console with:

watch kubectl get pods -o wide

Note: I install the useful ‘watch‘ command via brew too, along with the zsh plugin for minikube

After following the steps to get the admin password and hit the Jenkins URL http://127.0.0.1:8080 in your desktop browser, you should see the familiar “Welcome to Jenkins!” page…

Pause a moment to appreciate that this Jenkins is running in a JVM inside a Docker container on a Kubernetes Pod as a Service in a Namespace in a Kubernetes Instance that’s running inside a Virtual Machine running under a Hypervisor on a host device….

turtles all the way down

there are many things I’ve skipped over here, including looking at storage, auth, security and all the usual considerations but the aim has been to quickly and easily get to this point so we can start developing the pipelines and processes we’re really wanting to focus on.

Navigating to Manage Jenkins then Plugins Manager should show some updates already available – this proves we have connectivity to the public Jenkins Update Centre out of the box. The Kubernetes Jenkins plugin is the key thing I’m looking for – select and update if required:

If you go to http://127.0.0.1:8080/configure you should see a link at the foot of the page to the new location for “Clouds”: http://127.0.0.1:8080/configureClouds/ – that should already be configured with sufficient settings for Jenkins to use your Kubernetes cluster, but it’s worthwhile taking a look through the settings and options there. No changes should be required here now though.

Setup a first Jenkins Pipeline job

Create a new Jenkins Pipeline job and add the following settings as shown in the picture below…

In the job config page under “Pipeline”, for “Definition” select “Pipeline script from SCM” and enter the URL of this github project which contains my example pipeline code:

https://github.com/DonaldSimpson/minikube-pipelines.git

everything else can be left as the default, and should look something like this:

This means that your Job will checkout my example repo and run the pipeline Groovy code in the Jenkinsfile, which you can see here:

https://github.com/DonaldSimpson/minikube-pipelines/blob/master/Jenkinsfile

This file has been heavily commented to explain every part of the pipeline and shows what each step is doing. Taking a read through it should show you how pipelines work, how Jenkins is creating Docker Containers for the different Stages, and give you some ideas on how you could develop this simple example further.

Run it and take a look at the results

Save and run the job, and you should (eventually) see something like this:

The jobs Console Output will have a ton of info, showing everything from the container images being pulled, the git repo being cloned, the very verbose gradle build output and all the local files.

So in summary, what just happened?

Jenkins connected to Kubernetes via the Kubernetes plugin and its settings

The required Docker images (git and gradle, as specified at the top of the Jenkinsfile pipeline) were pulled from Docker Hub

A git Docker container was started up (as a new pod in k8s) and connected to Jenkins as an Agent using JNLP

A ‘git clone’ was run inside that container to check out the source code from an example repo

A gradle Docker container was started and connected as a Jenkins JNLP Agent, running as another k8s pod

The gradle build stage was run inside that gradle container, using the source files checked out from git in the previous Stage

The newly built JAR file was archived so we could use it later if wanted

The pipeline ends, and k8s will clean up the containers

This pipeline could easily be expanded to run that new JAR file as an application as demonstrated here: https://github.com/AutomatedIT/springbootjenkinspipelinedemo/blob/master/Jenkinsfile#L5, or, you could build a new Docker image containing this version of the JAR file and start that up and test it and so on. You could also automate this so that whenever the source code is changed a build is triggered that does all of this automatically and records the result… hello CI/CD!

What next?

From the above demo you can hopefully see how easy it is to create an end to end pipeline that will automatically provision Jenkins Agents running on Kubernetes for you.

You can use this functionality to quickly and safely develop pipeline processes like the one we have examined, that run across multiple Agents, using each for a particular function/step in your workflow, leaving the provisioning and housekeeping work to the underlying Kubernetes cluster. With this, you can build or pull docker images, run them, test them, start them up as other Jenkins JNLP Agents and so on, all “as code” and all fully automated.

And after all that… ?

Being able to fire up Docker containers and use them as Jenkins Agents running on a Kubernetes platform is extremely powerful in itself, but you can go a step further and start using this setup to build, deploy and manage Kubernetes resources directly, too – from Jenkins Pipelines running on the same Kubernetes Cluster – or even from one Kubernetes to another.

We’ve seen during setup that we can use kubectl to manage the k8s cluster and its components – we can also do that from within containers and stages in our pipelines, wherever they are.

This example project demonstrates just that:

https://github.com/DonaldSimpson/devdoncoin

and contains an example pipeline and supporting files to build, lint, security scan, push to registry, deploy to Kubernetes, run, test and clean up the example “doncoin” application via a Jenkins pipeline running on Kubernetes.

It also includes outlines and suggestions for expanding things even further, in to a more mature and production-ready setup, introducing things like Jenkins shared libraries, linting and testing, automating vulnerability scanning within the pipeline, and so on.

Note the docker containers used there, the kubernetes yaml file and shell script, and the simple container with kubectl inside it.

Cheers,

Don

Kubernetes on Mac with Minikube

Intro

This is a follow on to the previous writeup on Kubernetes with Minikube and shows how to quickly and easily get a Kubernetes cluster up and running using VirtualBox and Minikube.

The setup is very similar for all platforms, but this post is specifically focused on Mac, as I’m planning on using this as the basis for a more complex post on Jenkins & Kubernetes Pipelines (and that post is now posted, here!).

Installing required components

There are three main components required:

VirtualBox is a free and open source hypervisor. It is a light weight app that allows you to run Virtual Machines on most platforms (Mac, Windows, Linux). We will use it here to run the Minikube Virtual Machine.

Kubectl is a command line tool for controlling Kubernetes clusters, we install this on the host (Mac) and use it to control and interact with the Kubernetes cluster we will be running inside the Minikube VM.

Minikube is a tool that runs a single-node Kubernetes cluster in a virtual machine on your personal computer. We’re using this to provision our k8s cluster and will also take advantage of some of the developer friendly addons it offers.

Downloads and Instructions

Here are links to the required files and detailed instructions on setting each of these components up – I went for the ‘brew install‘ options but there are many alternatives in these links. The whole process is very simple and took about 10 minutes.

VirtualBox: https://www.virtualbox.org/wiki/Downloads

simply download the Mac VirtualBox .dmg image file and install it

kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/

brew install kubectl

Minikube: https://kubernetes.io/docs/tasks/tools/install-minikube/

brew install minikube

Starting up Kubernetes via Minikube in VirtualBox on Mac

From the Mac terminal (iTerm2 or whatever you use) running minikube start should kick off the download of the minikube VirtualMachine image.

If you would prefer to use another hypervisor (VMWare, kvm etc) you may need to specify the driver from this list:
https://kubernetes.io/docs/setup/learning-environment/minikube/#specifying-the-vm-driver

most popular hypervisors are well supported by Minikube.

Here’s what that looks like on my Mac – this may take a few minutes as it’s downloading a VM (if not already available locally), starting it up and configuring a Kubernetes Cluster inside it:

there’s quite a lot going on and not very much to see; you don’t even need to look at VirtualBox as it’s running ‘headless’, but if you open it up you can see the new running VM and its settings:

these values are all set to sensible defaults, but you may want to tweak things like memory or cpu allocations – running

minikube config -h

should help you see what to do, for example

minikube start --memory 1024

to change the allocated memory.

If you then take a look at the config file in ~/.minikube/config/config.js you will see how your preferences – resource limits, addons etc – are persisted and managed there.

Looking back at VirtualBox, if you click on “Show” or the running VM you can open that up to see the console for the Minikube VM:

to stop the vm simply do a minikube stop, or just type minikube to see a list of args and options to manage the lifecycle, e.g. minikube delete, status, pause, ssh and so on.

Minikube Addons

One of the handy features Minikube provides are its selection of easy to use addons. As explained in the official docs here you can see the list and current status of each addon by typing minikube addons list

the storage-provisioner and default-storeageclass addons were automatically enabled on startup, but I usually like to add the metrics server and dashboard too, like so:

minikube addons enable metrics-server
minikube addons enable dashboard

I often use helm & tiller, efk, istio and the registry too – this feature save me a lot of time and messing about!

Accessing the Kubernetes Dashboard – all done!

Once that’s completed you can run minikube dashboard to open up the Kubernetes dashboard on your host.

Minikube makes this all very easy; we didn’t have to forward ports, configure firewalls, consider ingress and egress, create RBAC roles, manage accounts/passwords/keys or set up DNS, or any of the many things you would normally want or have to consider to get to this point.

These features make Minikube a great choice for development work, where you don’t want to care about things like this as you would in a “for real” environment.

Your browser should open up the Kubernetes Dashboard, and you can click around and see the status of the many components that comprise your new Kubernetes cluster:

And then…

Next up I’ll be building on this setup by deploying a Jenkins instance inside the Kubernetes Cluster, then configuring that to use Kubernetes to build, manage and deploy applications on the same Kubernetes Cluster.

This is now covered in the next post, here:

Kubernetes – with Minikube and Helm – part 2

This is the second half of the Kubernetes with Minikube and Helm presentation, the first half explains all of the steps we went through to get to this point, and is available here:

In this section we cover the following:

  • Helm and Tiller – what they are, when & why you’d maybe use them
  • Helm and Tiller – prep, install and Helm Charts
  • Deploying Jenkins via Helm Charts
  • and WordPress w/MariaDB too
  • Wrap up

The below are mostly my technical notes from this session, with some added blurb/explanation.

Helm and Tiller – what they are, when & why you’d maybe use them

From the Helm site:

“Helm helps you manage Kubernetes applications — Helm Charts help you define, install, and upgrade even the most complex Kubernetes application. Charts are easy to create, version, share, and publish — so start using Helm and stop the copy-and-paste.”

https://helm.sh/

Helm is basically a package manager for Kubernetes applications. You can choose from a large list of Stable (or not so!) ready made packages and use the Helm Charts to quickly and easily deploy them to your own Kubernetes Cluster.

This makes light work of some very complex deployment tasks, and it’s also possible to extend these ready-made charts to suit your needs, and to write your own Charts from scratch, or pass your own values to override default ones, or… many other interesting options!

For this session we are looking at installing Helm, reviewing some example Helm Charts and deploying a few “vanilla” ones to the cluster we created in the first half of the session. We also touch upon the life-cycle of Helm Charts – it’s similar to dockers – and point out some of the ways this could be extended and customised to suit your needs – more on this at a later date hopefully.

Helm and Tiller – prep, install and Helm Charts

First, installing Helm – it’s as easy as this, run on your laptop/host that’s running the Minikube k8s we setup earlier:

Get & chmod the get_helm script, then run it:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get > get_helm.sh

chmod 700 get_helm.sh

./get_helm.sh

Tiller is the client part of Helm and is deployed inside your k8s cluster. It’s set to be removed with the release of Helm 3, but the basic functionality wont really change. More details here https://helm.sh/blog/helm-3-preview-pt1/

Next we do the Tiller prep & install – add RBAC for tiller, deploy via helm and take a look at the running pods:

kubectl create serviceaccount -n kube-system tiller

kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller

helm init --service-account tiller

kubectl --namespace kube-system get pods

Helm Charts – look at the list of available stable Charts, then deploy a couple. The github repo is here

https://github.com/helm/charts

Update the local helm repo info:

helm repo update

then, for example, install Redis from its Helm Chart to the k8s cluster as easily as this:

helm install stable/redis

or helm install stable/mysql and check the console output that explains how to access the newly deployed app.

keep an eye on the pods to see what’s going on: watch kubectl get pods -o wide

Deploying Jenkins via Helm Charts

helm ls

helm delete <things you don't want any more to free up resources>

helm install --set serviceType=NodePort --name jenki stable/jenkins

again, watch kubectl get pods -o wide

now get the URL for the Jenkins service from Minikube:

minikube service --url=true jenki-jenkins

Hit that URL in your browser, and grab the password in UI from Pods > Jenki and log in to Jenkins with the user “admin”:

That’s a Jenkins instance deployed via Helm and Tiller and a Helm Chart to our Kubernetes Cluster running inside Minikube via a VirtualBox VM… all done in a few minutes. And it’s all customisable, repeatable, highly scaleable and awesome.

and WordPress w/MariaDB too

This was the “bonus demo” if my laptop wasn’t on fire – and thanks to some rapid cleaning up it managed fine – showing how quickly we could deploy a functional WordPress with MariaDB backend to our k8s cluster using the Helm Chart.

To prepare for this I did a helm ls to see all the things I had running. then helm delete --purge jenki, gave it a while to recover then had to do

kubectl delete pods <jenkinpod>

before starting the WordPress Chart deployment with

helm install --set serviceType=NodePort --name wp-k8s stable/wordpress

watch kubectl get pods -o wide for a while – note the chart is configured with the mariadb pod as a pre requisite of the wordpress instance:

Once it’s started we requested the service URL from Minikube again, making ingress nice and easy:

minikube service --url=true wp-k8s-wordpress

Hit that in the browser, using https and accepting the cert warning…

then logged in as `user` and qureied for the password in the k8s secret…

echo Password: $(kubectl get secret wp-k8s-wordpress -o
jsonpath="{.data.wordpress-password}" | base64 --decode)

and logged in to WordPress:

Wrap up

That’s it – we covered a lot in this session, and plan to use this as a platform to explore Helm in more detail later, writing our own Helm Charts and providing our own customisations to them.

minikube delete; rm -rf ~/.minikube

Cleans up everything we’d done:

Leaving just the local tools to remove if you want to – see the first half for a reminder.

Cheers,

Don

Update: this follow-on post runs through setting up Jenkins with Helm then creating Jenkins Pipelines that dynamically provision dockerised Jenkins Agents:

Pin It on Pinterest