Integrating Solana with GitHub Workflows for Enhanced CI/CD

Intro

Being a fan of Solana and interested in exploring and using the technology, I wanted to find some practical use for it in my role as a DevOps Engineer.

This post attempts to do that, by integrating Solana in to a CI/CD workflow to provide an audit of build artefacts. Yes, there are many other ways & tools you could do this, but I found this particular combination interesting.

Overview

Solana is a high-performance blockchain platform known for its speed and scalability.

Integrating Solana with GitHub Workflows can bring a new level of security, transparency, and efficiency to your CI/CD pipelines.

This blog post demonstrates how to leverage Solana in a GitHub Workflow to enhance your development and deployment processes.

What is Solana?

Solana is a decentralised blockchain platform designed for high throughput and low latency. It supports smart contracts and decentralized applications (dApps) with a focus on scalability and performance. Solana’s unique consensus mechanism, Proof of History (PoH), allows it to process thousands of transactions per second.

Why Integrate Solana with GitHub Workflows?

Integrating Solana with GitHub Workflows can provide several benefits:

  • Immutable Build Artifacts: Store cryptographic hashes of build artifacts on the Solana blockchain to ensure their integrity and immutability.
  • Automated Smart Contract Deployment: Use Solana smart contracts to automate deployment processes.
  • Transparent Audit Trails: Record CI/CD pipeline activities on the blockchain for transparency and auditability.

Setting Up Solana in a GitHub Workflow

Let’s walk through an example of how to integrate Solana with a GitHub Workflow to store build artifact hashes on the Solana blockchain.

Step 1: Install Solana CLI

Ensure you have the Solana CLI installed on your local machine or CI environment:

sh -c "$(curl -sSfL https://release.solana.com/v1.8.0/install)"
Step 2: Set Up a Solana Wallet

Then, you need a Solana wallet to interact with the blockchain. You can use the Solana CLI to create a new wallet:

solana-keygen new --outfile ~/my-solana-wallet.json

This command generates a new wallet and saves the keypair to ~/my-solana-wallet.json.

Step 3: Create a GitHub Workflow

Create a new GitHub Workflow file in your repository at .github/workflows/solana.yml:

name: Solana Integration

on:
  push:
    branches:
      - main

jobs:
  build:
    runs-on: ubuntu-latest

    steps:
      - name: Checkout code
        uses: actions/checkout@v2

      - name: Set up Solana CLI
        run: |
          sh -c "$(curl -sSfL https://release.solana.com/v1.8.0/install)"
          export PATH="/home/runner/.local/share/solana/install/active_release/bin:$PATH"
          solana --version

      - name: Build project
        run: |
          # Replace with your build commands
          echo "Building project..."
          echo "Build complete" > build-artifact.txt

      - name: Generate SHA-256 hash
        run: |
          sha256sum build-artifact.txt > build-artifact.txt.sha256
          cat build-artifact.txt.sha256

      - name: Store hash on Solana blockchain
        env:
          SOLANA_WALLET: ${{ secrets.SOLANA_WALLET }}
        run: |
          echo $SOLANA_WALLET > ~/my-solana-wallet.json
          solana config set --keypair ~/my-solana-wallet.json
          solana airdrop 1
          HASH=$(cat build-artifact.txt.sha256 | awk '{print $1}')
          solana transfer <RECIPIENT_ADDRESS> 0.001 --allow-unfunded-recipient --memo "$HASH"
Step 4: Configure GitHub Secrets

To securely store your Solana wallet keypair, add it as a secret in your GitHub repository:

  1. Go to your repository on GitHub.
  2. Click on Settings.
  3. Click on Secrets in the left sidebar.
  4. Click on New repository secret.
  5. Add a secret with the name SOLANA_WALLET and the content of your ~/my-solana-wallet.json file.
Step 5: Run the Workflow

Push your changes to the main branch to trigger the workflow. The workflow will:

  1. Check out the code.
  2. Set up the Solana CLI.
  3. Build the project.
  4. Generate a SHA-256 hash of the build artifact.
  5. Store the hash on the Solana blockchain.

Example Output and Actions

After the workflow runs, you can verify the transaction on the Solana blockchain using a block explorer like Solscan. The memo field of the transaction will contain the SHA-256 hash of the build artifact, ensuring its integrity and immutability.

Example Output:
Run sha256sum build-artifact.txt > build-artifact.txt.sha256
b1946ac92492d2347c6235b4d2611184a1e3d9e6 build-artifact.txt
Run solana transfer <RECIPIENT_ADDRESS> 0.001 --allow-unfunded-recipient --memo "b1946ac92492d2347c6235b4d2611184a1e3d9e6"
Signature: 5G9f8k9... (shortened for brevity)
Possible Actions:
  • Verify Artifact Integrity: Use the stored hash to verify the integrity of the build artifact before deployment.
  • Audit Trail: Maintain a transparent and immutable audit trail of all build artifacts.
  • Automate Deployments: Extend the workflow to trigger automated deployments based on the stored hashes.

Conclusion

Integrating Solana with GitHub Workflows provides a powerful way to enhance the security, transparency, and efficiency of your CI/CD pipelines.

By leveraging Solana’s blockchain technology, you can ensure the integrity and immutability of your build artifacts, automate deployment processes, and maintain transparent audit trails.

I have used solutions similar to this previously; by automatically adding a containers hash to an immutable database when it passes testing, while at the same time ensuring that the only images permissable for deployment in the next environment up (e.g. Production) exist on that list, you can (at least help to) ensure that only approved code is deployed.

If you’d like to learn more about Solana they have some great documentation and examples: https://solana.com/docs/intro/quick-start

Enhancing CI/CD Pipelines with Immutable Build Artifacts Using Crypto Technologies

Intro:

In the ever-evolving landscape of software development, ensuring the integrity and security of build artifacts is paramount. As CI/CD pipelines become more sophisticated, integrating cryptocurrency technologies can provide a robust solution for managing and securing build artifacts. This blog post delves into the concept of immutable build artifacts and how crypto technologies can enhance CI/CD pipelines.

Understanding CI/CD Pipelines

CI/CD pipelines are automated workflows that streamline the process of integrating, testing, and deploying code changes. They aim to:

  • Continuous Integration (CI): Automatically integrate code changes from multiple contributors into a shared repository, ensuring a stable and functional codebase.
  • Continuous Deployment (CD): Automatically deploy integrated code to production environments, delivering new features and fixes to users quickly and reliably.

The Importance of Immutable Build Artifacts

Build artifacts are the compiled binaries, libraries, and other files generated during the build process. Ensuring these artifacts are immutable—unchangeable once created—is crucial for several reasons:

  • Security: Prevents tampering and unauthorized modifications.
  • Reproducibility: Ensures that the same artifact can be deployed consistently across different environments.
  • Auditability: Provides a clear and verifiable history of artifacts.

Leveraging Crypto Technologies for Immutable Build Artifacts

Cryptocurrency technologies, particularly blockchain, offer unique advantages for managing build artifacts:

  • Decentralization: Distributes data across multiple nodes, reducing the risk of a single point of failure.
  • Immutability: Ensures that once data is written, it cannot be altered or deleted.
  • Transparency: Provides a transparent and auditable history of all transactions.

Implementing Immutable Build Artifacts in CI/CD Pipelines

  1. Generate Build Artifacts: During the CI process, generate the build artifacts as usual.
   # Example: Building a Docker image
   docker build -t my-app:latest .
  1. Create a Cryptographic Hash: Generate a cryptographic hash (e.g., SHA-256) of the build artifact to ensure its integrity.
   # Example: Generating a SHA-256 hash of a Docker image
   docker save my-app:latest | sha256sum
  1. Store the Hash on a Blockchain: Store the cryptographic hash on a blockchain to ensure immutability and transparency.
   # Example: Using a blockchain-based storage service
   blockchain-store --hash <generated-hash> --metadata "Build #123"
  1. Retrieve and Verify the Hash: When deploying the artifact, retrieve the hash from the blockchain and verify it against the artifact to ensure integrity.
   # Example: Verifying the hash
   retrieved_hash=$(blockchain-retrieve --metadata "Build #123")
   echo "<artifact-hash>  my-app.tar.gz" | sha256sum -c -

Example Workflow

  1. CI Pipeline:
  • Build the artifact (e.g., Docker image).
  • Generate a cryptographic hash of the artifact.
  • Store the hash on a blockchain.
  1. CD Pipeline:
  • Retrieve the hash from the blockchain.
  • Verify the artifact’s integrity using the retrieved hash.
  • Deploy the verified artifact to the production environment.

Benefits of Using Immutable Build Artifacts

  • Enhanced Security: Blockchain’s immutable nature ensures that build artifacts are secure and tamper-proof.
  • Improved Reproducibility: Immutable artifacts guarantee consistent deployments across different environments.
  • Increased Transparency: Blockchain provides a transparent and auditable history of all build artifacts.

Conclusion

Integrating cryptocurrency technologies with CI/CD pipelines to manage immutable build artifacts offers a range of benefits that enhance security, reproducibility, and transparency. By leveraging blockchain’s decentralized and immutable nature, organizations can ensure the integrity and authenticity of their build artifacts, providing a robust foundation for their CI/CD processes.

As the software development landscape continues to evolve, embracing these cutting-edge technologies will be crucial for maintaining a competitive edge and ensuring the reliability and security of software deployments. By implementing immutable build artifacts, organizations can build a more secure and efficient CI/CD pipeline, paving the way for future innovations.

ArgoCD and K8sGPT with KinD

This post covers a lot (very quickly and reasonably easily);

It starts with using Kuberenets in Docker (KinD) to create a minimal but functional local Kubernetes Cluster.
Then, ArgoCD is setup and a sample app is deployed to the cluster.
Finally, k8sgpt is configured and a basic analysis of the cluster is run.

The main point of all of this was to try out k8sgpt in a safe and disposable environment.

Step 1: Install kind

First, ensure you have kind installed.

KinD can be installed quickly and easily with just the following commands:

curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.17.0/kind-linux-amd64
chmod +x ./kind
sudo mv ./kind /usr/local/bin/kind

Check out this older post for more detail on KinD:
https://www.donaldsimpson.co.uk/2023/08/09/kind-local-kubernetes-with-docker-nodes-made-quick-and-easy/

Step 2: Create a kind Cluster

Create a new kind cluster:

kind create cluster --name argocd-cluster

Step 3: Install kubectl

Ensure you have kubectl installed. You can install it using the following command:

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
chmod +x kubectl
sudo mv kubectl /usr/local/bin/

Step 4: Install ArgoCD

  1. Create the argocd namespace:
kubectl create namespace argocd
  1. Install ArgoCD using the official manifests:
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml

Step 5: Access the ArgoCD API Server

  1. Forward the ArgoCD server port to localhost:
kubectl port-forward svc/argocd-server -n argocd 8080:443
  1. Retrieve the initial admin password:
kubectl get secret argocd-initial-admin-secret -n argocd -o jsonpath="{.data.password}" | base64 -d; echo

Step 6: Login to ArgoCD

  1. Open your browser and navigate to https://localhost:8080.
  2. Login with the username admin and the password retrieved in the previous step.

Step 7: Install argocd CLI

  1. Download the argocd CLI:
curl -sSL -o argocd https://github.com/argoproj/argo-cd/releases/latest/download/argocd-linux-amd64
chmod +x argocd
sudo mv argocd /usr/local/bin/
  1. Login using the argocd CLI:
argocd login localhost:8080
  1. Set the admin password (optional):
argocd account update-password

Step 8: Deploy an Application with ArgoCD

  1. Create a new application:
argocd app create guestbook \
    --repo https://github.com/argoproj/argocd-example-apps.git \
    --path guestbook \
    --dest-server https://kubernetes.default.svc \
    --dest-namespace default
  1. Sync the application:
argocd app sync guestbook
  1. Check the application status:
argocd app get guestbook

Step 9: Install K8sGPT

  1. Install K8sGPT CLI:
curl -Lo k8sgpt https://github.com/k8sgpt-ai/k8sgpt/releases/latest/download/k8sgpt-linux-amd64
chmod +x k8sgpt
sudo mv k8sgpt /usr/local/bin/
  1. Configure K8sGPT:
k8sgpt auth --kubeconfig ~/.kube/config

Step 10: Inspect the Cluster with K8sGPT

  1. Run K8sGPT to inspect the cluster:
k8sgpt analyze

Example Output and Possible Associated Actions

Example Output:

[INFO] Analyzing cluster…

[INFO] Found 3 issues in namespace default:

[WARNING] Pod guestbook-frontend-5d8d4f5d6f-abcde is in CrashLoopBackOff state

[WARNING] Service guestbook-frontend is not reachable

[INFO] Deployment guestbook-frontend has 1 unavailable replica

Associated Actions:

  1. Pod in CrashLoopBackOff State:
    • Action: Check the logs of the pod to identify the cause of the crash.
    • Command: kubectl logs guestbook-frontend-5d8d4f5d6f-abcde -n default
    • Possible Fix: Resolve any issues found in the logs, such as missing environment variables, incorrect configurations, or application errors.
  2. Service Not Reachable:
    • Action: Verify the service configuration and ensure it is correctly pointing to the appropriate pods.
    • Command: kubectl describe svc guestbook-frontend -n default
    • Possible Fix: Ensure the service selector matches the labels of the pods and that the pods are running and ready.
  3. Deployment with Unavailable Replica:
    • Action: Check the deployment status and events to understand why the replica is unavailable.
    • Command: kubectl describe deployment guestbook-frontend -n default
    • Possible Fix: Address any issues preventing the deployment from scaling, such as resource constraints or scheduling issues.

Conclusion

Ok, addmitedly that was a bit of a whirlwind, but if you followed it you have successfully deployed ArgoCD to a kind cluster, deployed an application using ArgoCD to that new cluster, then inspected the cluster & app using K8sGPT.

The example output and associated actions from provide guidance on how to address common issues identified by K8sGPT.

This setup allows you to manage your applications and monitor the health of your Kubernetes cluster effectively, and being able to spin up a disposable cluster like this is handy for many reasons.

Frigate – object detection and notifications

Intro

My notes on setting up Frigate NVR for a home CCTV setup.

The main focus of this post is on object detection (utilising a Google Coral TPU) and configuring notifications to Amazon Fire TVs (and other devices) via intregration with HomeAssistant.

There’s a lot to cover and no point in reproducing the existing documentation, you can find full details & info on setting up the main components here:

ZoneMinder
Google Coral Edge TPU
Frigate
HomeAssistant

Background

I used Zoneminder for many years to capture and display my home CCTV cameras. There are several posts – going back to around 2016 – on this site under the ZoneMinder category here

This worked really well for me all that time, but I was never able to setup Object Detection in a way I liked – it can be done in a number of different ways, but everything I tried out was either very resource intensive, required linking to Cloud services like TensorFlow for processing, or was just too flaky and unreliable. It was fun trying them out, but none of them ever suited my needs. Integration and notification options were also possible, but were not straightforward.

So, I eventually took the plunge and switched to Frigate along with HomeAssistant. There was a lot to learn and figure out, so I’m posting some general info here in case it helps other people – or myself in future when I wonder why/how I did things this way….

Hardware

I have 4 CCTV cameras, these are generic and cheap 1080p Network IP cameras, connected via Ethernet. I don’t permit them any direct access to the Internet for notifications, updates, event analysis or anything.

I ran ZoneMinder (the server software that manages and presents the feeds from the cameras) on various hardware over the years, but for the Frigate and HomeAssistant setup I have gone for an energy-efficient and quiet little “server” – an HP ProDesk 600 G1 Mini – it’s very very basic and very low powered… and cost ÂŁ40 on eBay:

After testing Object Detection using the CPU (this is waaaay too much load for the CPU to cope with longer-term, but really helps to test proves the concept) I have since added a Google Coral Edge TPU to the host via USB. This enables me to offload the detection/inference work to the TPU and spare the little CPU’s energy for other tasks:

Objectives

My key goals here were to:

  1. Setup and trial Frigate – to see if it could fit my requirements and replace ZoneMinder
  2. Add Object Detection – without having to throw a lot of hardware at it or use Cloud Services like TensorFlow
  3. Integrate with HomeAssistant – I’d been wanting to try this for a while, to integrate my HomeKit devices with other things like Sonos, Amazon Fire TVs, etc

Note that you do not need to use HomeAssistant or MQTT in order to use or try Frigate, it can run as a standalone insatnce if you like. Frigate also comes with its own web interface which is very good, and I run this full-screen/kiosk mode on one of my monitors.

Setup and trial Frigate: setting up Frigate was easy, I went for Ubuntu on my host and installed Docker on that, then configured Frigate and MQTT containers to communicate. These are both simply declared in the Frigate config like this:

mqtt:
  host: 192.168.0.27
detectors:
  coral:
    type: edgetpu
    device: usb

Add Object Detection: with Frigate, this can be done by a Google Coral Edge TPU (pic above) – more info here: https://coral.ai/products/accelerator/ and details on my config below. I first trialled this using the host CPU and it ‘worked’ but was very CPU intensive: adding the dedicated TPU makes a massive difference and inference speeds are usually around 10ms for analysis of 4 HD feeds. This means the host CPU is free to focus on running other things (which is just as well given the size of the thing).

    objects:
      track:
        - person
        - dog
        - car
        - bird
        - cat

https://docs.frigate.video/configuration/objects

Integrate with HomeAssistant : Added the HomeAssistant Docker instance to my host, then ran and configured MQTT container for Frigate then configured Frigate + HomeAssistant to work together. This was done by first installing HACS in HA, then using the Frigate Integration as explained here:
https://docs.frigate.video/integrations/home-assistant/

Setup Notifications

Phone notifications – I have previosuly had (and posted about my) issues with CGNAT and expected I would need to set up and ngrok tunnel and certs and jump through all sorts of hoops to get HA working remotely.

HA offers a very simple Cloud Integration via https://www.nabucasa.com/

I trialled this and was so impressed I have already signed up for a year – it’s well worth it for me and makes things much simpler. Phone notifications can be setup under HomeAssistant > Settings > Automations and Scenes > Frigate Notifications – after installing the Frigate Notifications Bueprint via HACS.

I can now open HomeAssistant on my phone from anywhere in the World and view a dashboard that has live feeds from my CCTV cameras at home. I have also set it up to show recently detected objects from certain cameras too.


Amazon FireTV notifications – I have just setup the sending of notifications to the screen of my Amazon Fire TV, this was done by first installing this app on the device:
https://www.amazon.com/Christian-Fees-Notifications-for-Fire/dp/B00OESCXEK
Then installing
https://www.home-assistant.io/integrations/nfandroidtv/
on HA and configuring Notifications as described there. I now get a pop-up window on my projector screen whenever there’s someone at my front gate.

This is a quick (and poor quality) pic of my projector screen (and chainsaw collection) with an Amazon Fire TV 4k displaying a pop-up notification in the bottom-right corner:

This means I now don’t need to leave a monitor on showing my CCTV feeds any more, as I am notified either via my mobile or on screen. And my notifications are only set up for specific object types – people & cars, and not for things it picks up frequently that I don’t want to be alerted on, like birds or passing sheep or cows.

Minor Apple Watch update – these notifications are also picked up on my Apple Watch, which is set to display my phone notifications. So I also get a short video clip of the key frames which is pretty awesome and works well.


My Frigate Config – here’s an example from the main “driveway” camera feed, this is the one I want to be montoring & ntoified about most. It’s using RTSP to connect, record and detect the listed object types that I am interested in:

  driveway:
    birdseye:
      order: 1  
    enabled: True
    ffmpeg:
      inputs:
        - path: rtsp://THEUSER:THEPASSWORD@192.168.0.123:554/1
          roles:
            - detect
            - rtmp
        - path: rtsp://THEUSER:THEPASSWORD@192.168.0.123:554/1
          roles:
            - record        
    detect:
      width: 1280
      height: 720
      fps: 5
      stationary:
        interval: 0
        threshold: 50  
    objects:
      track:
        - person
        - dog
        - car
        - bird
        - cat

The full 24/7 recordings are all kept (one file/hour) for a few days then deleted and can be seen via HA under
Media > Frigate > Recordings > {camera name} > {date} > {hour}

Docker container start scripts

A note of the scripts I use to start the various docker containers.

This would be much better managed under Docker Compose or something, there are plenty of examples of that online, but I’d like to look at setting all of this up on Kubernetes so leaving this as rough as it is for now.

I am also running Grafana and NodeExporter at the moment to keep an eye on the stats, although things would probably look less worrying if I wasn’t adding to the load just to monitor them:

<help!>

I’ll need to do something about that system load; it’s tempting to just get a second HP host & Coral TPU and put some of the load and half of the cameras on that – will see… a k8s cluster of them would be neat.

# Start Frigate container
docker run -d \
--name frigate \
--restart=unless-stopped \
--mount type=tmpfs,target=/tmp/cache,tmpfs-size=1000000000 \
--device /dev/bus/usb:/dev/bus/usb \
--device /dev/dri/renderD128 \
--shm-size=80m \
-v /root/frigate//storage:/media/frigate \
-v /root/frigate/config.yml:/config/config.yml \
-v /etc/localtime:/etc/localtime:ro \
-e FRIGATE_RTSP_PASSWORD='password' \
-p 5000:5000 \
-p 8554:8554 \
-p 8555:8555/tcp \
-p 8555:8555/udp \
ghcr.io/blakeblackshear/frigate:stable

# Start homeassistant container
docker run -d \
--name homeassistant \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-v /root/ha_files:/config \
--network=host \
ghcr.io/home-assistant/home-assistant:stable

# Start MQTT container
docker run -itd \
--name=mqtt \
--restart=unless-stopped \
--network=host \
-v /storage/mosquitto/config:/mosquitto/config \
-v /storage/mosquitto/data:/mosquitto/data \
-v /storage/mosquitto/log:/mosquitto/log \
eclipse-mosquitto

# Start NodeExporter container
docker run -d \
--name node_exporter \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-p 9100:9100 \
prom/node-exporter

# Start Grafana container
docker run -d \
--name grafana \
--privileged \
--restart=unless-stopped \
-e TZ=Europe/Belfast \
-p 3000:3000 \
grafana/grafana

Kind – local kubernetes with docker nodes made quick and easy

Quick notes on trying out Kind for a local and lightweight Kubernetes cluster.

The “getting started” steps for Kind are easy and well documented on the Kind site, but I didn’t find a good guide on adding the Kubernetes Dashboard to a newly created Kind cluster… I’m planning on using this as the basis for a few local projects so wanted to capture it here, plus checkout using the Lens IDE to manage and monitor a local “Kind” cluster.

As it says on the Kind website… if you have go 1.16+ and docker or podman installed go install sigs.k8s.io/kind@v0.20.0 && kind create cluster is all you need!

Here’s me doing just that to create a new kind cluster on my Mac in 21 seconds….

all very quick and very easy, and it is incredibly light on resources too.

Notes on adding the Kubernetes Dashboard to a new Kind cluster

Apply the dashboard yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml

Give it a moment or two to start up, checking with:

kubectl get pod -n kubernetes-dashboard

then create the admin user & cluster role bindings

kubectl create serviceaccount -n kubernetes-dashboard admin-user

kubectl create clusterrolebinding -n kubernetes-dashboard admin-user --clusterrole cluster-admin --serviceaccount=kubernetes-dashboard:admin-user

Next, get the auth token:

kubectl -n kubernetes-dashboard create token admin-user

Start up the local proxy

kubectl proxy

Browse to the local login endpoint here and pass it the token from above

and you should see the Kubernetes Dashboard for your (very new) Kind cluster like this…

The Kubernetes Dashboard could also be deployed via Helm:

helm install stable/kubernetes-dashboard --name my-release

or via the Lens UI (more on that below):

Setting up Lens is even simpler

Download Lens and log in:

https://k8slens.dev/

then select your “kind-kind” cluster from Lens > Catalogue > Clusters and you can see & do a whole load more with your cluster via Lens:

The missing metrics warning in Lens saying “Metrics are not available due to missing or invalid prometheus configuration.”

can be sorted by installing Prometheus using Helm via the CLI or from Lens:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm install prometheus prometheus-community/kube-prometheus-stack

Alternatively, you can enable the inbuilt Metrics options in Lens:

Either way, things should soon look much better:

Adding multiple worker nodes to a kind cluster

This can be done in Kind by defining a cluster manifest with multiple worker nodes like this:

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker
- role: worker
- role: worker

then creating the cluster specifying that file, e.g.

kind create cluster --config my-kind-cluster-config.yaml

“docker ps” should then show your multiple nodes, as will Lens:

Optoma Projector overheating problem – Failing Fan – mega easy fix!!

Disclaimers/tips:
– unplug projector before removing the covers
– do not blame me if you try this and it doesn’t work
– don’t get any moisture on or near the bulb
– do not blame me if anything goes wrong
– if you have any better ideas, please share
– do not blame me for anything you do

I bought an “Optoma H181x Full 3D HD Projector” back in 2015, and it’s been awesome for 7 years. No issues at all, just many happy hours of HD and 3D movie & TV watching.

Recently though, it started to overheat and switch itself off after just a couple of minutes running, with the ominous message “Fan locked. Projector will switch off automatically. Please contact service centre for repair“.

Looking around online I could see it was a common problem in older projectors, usually due to dust buildup, and often sorted by either cleaning or replacing a failing fan.

I tried to clean (what I could easily access of) the fan but the blades etc were not ery dirty and it made no difference. Looking through the front vents with a torch, I could see the fan was trying to turn on startup then giving up. It’s a pretty ordinary component but taking the projector apart sounded complex and error prone (many reports of this going badly for others) and after a partial attempt I decided it wasn’t something I was comfortable or confident doing…. too many hidden clips and other fragile parts needing disconnected or removed, like the IR receiver, the switches, the zoom/focus wheel, etc.

This pic shows the top panel removed (just one captive screw on the left of the cover needs undone, then it slides left and lifts up & off easily.). Note: there’s a sensor that prevents the projector from powering on while this cover is removed.

You can see the culprit fan lurking just behind that yellow tape, it cools the bulb housing. To get anywhere near it I had to disconnect the wires via the plastic molex/clip on the left, remove those three screws on the far right, then carefully lift the bulb housing out (straight upwards), using the little metal handle with one hand and guiding the heat shields/flaps past the top of the cover with the other.

With that out of the way you can now see one side of the fan, but you can’t remove it from this side – here’s a close up:

I noticed the fan blades were stiffer and harder to rotate (by hand) than they probably should be, and I knew fans like these could sometimes be cleaned and lubricated… this sounded worth a shot (given the age and cost of repair, it was looking quite like ‘new projector time’ for me otherwise), but that cover was stuck down fast….

This pic shows the same side of the fan after I scraped off the cover to reveal four small holes. I then carefully placed 2-3 drops of ordinary multi-purpose oil in each hole. I let the projector stand in this position for a while, so the oil could work its way in/down, then cleaned the surface with Isopropyl Alcohol to remove any excess oil, before sticking some insulating tape back where the original label/cover had been. My projector sits up high and points downwards and I didn’t want any oil escaping…. or dripping on to the lamp. That would cause a kaboom.

I replaced the lamp housing and the cover and gave it a whirl – it’s now starting up first time no problem and running smoothly and quietly, just like it used to!

I think the placement of the fan – especially when the projector points downwards – means the fans central bearing is exposed to a lot of heat, which dries it out over time. It’s given many hours of use over the past 7 years so I’m not complaining, and hopefully I’ll get some more use out of it now.

This all took me quite a while to figure out and think through, but the actual fix was really easy and took about 10 minutes.

I thought I’d share this for anyone else facing the same issue.

Update: this projector worked ok for about 10 months after this fix then the bulb went – there were a lot of hours on it by then, and it was finally deemed to be ‘new projector time’.

Good luck, be careful,

Don

Milling massive beech tree trunk

Pics and updates on milling a large beech tree trunk.

This is the trunk section of this massive tree that blew over in a storm back in 2019:


I posted progress on other things made from this tree here too:
https://www.donaldsimpson.co.uk/2020/07/27/slabs-sleepers-and-stumps/

These giant chunks of wood have sat patiently outside my shed for the last 2+ years, like a massive looming todo list…

Now this (and a lot of sawdust) is all that’s left in the spot they occupied for so long:

It took me years to get around to it, but only a couple of Saturday afternoons to mill it all.

I used my Husqvarna 365 X-Torq chainsaw, along with a 42″ low-profile bar fitted with a 3/8 Lo Pro .050 ripping chain with 137 drive links… 137… I am not looking forward to sharpening that!

This, for me, is a whole load of bar and chain to run. It more than maxed out the cutting width of my Alaskan Mill setup, which was just a little too short to cope with the widest parts of this trunk, so I had to take a couple of edge sections off.

The Husqvarna 365 did a great job getting through this much solid beech wood – I expected more of a struggle, but as long as I took it slowly and used wedges to keep the weight from pinching the bar & chain, it chugged through it no problem. Having the trunks at a slight angle meant that gravity lent a hand too.

Great chain and bar from https://www.chainsawbars.co.uk/ along with their usual great service and helpful advice too, thank you again guys, this worked perfectly.

Here are some of the slabs that were produced – I don’t think the pics properly show how big these are, and they definately don’t convey the weight of them! I had to ‘walk’ the thicker ones over to the shed, one corner at a time.

These slabs are now stacked, spaced and weighted in my wood shed with a dehumidifier and fan on them (running off my small solar setup!). Hopefully in a year or so I can try giving the thinner slabs a final flattening with the router sled then turn them in to tables.

I’m hoping that void and inclusion on two of the slabs could work out quite nicely too – I’m not normally a fan of epoxy resin but this could be a good place for it? Maybe? Or just go with the ‘feature’ perhaps?

There are three 4″ thick slabs that will take even longer to properly dry, but if they don’t warp or split they should become very characterful – and heavy – tables.

To fit these in to my shed I had to take out a load of planks I milled a couple of years ago, many of which have come out nice and straight – so making something useful from those is now next on the todo list. My wife has already placed an order for some waney-edged bookcases for the Yurt… possibly curved to match the walls… ?!

Storm Arwen- windfall beech tree 2022

Cleaning up a beech tree that fell over in late 2021 during storm “Arwen”, squishing some stock fencing. There were ditches on both sides so getting the tractor close enough to be much help was awkward, but I used it to drag out the thickest trunk sections and bring things home. I plan to mill the trunks in to slabs, and will add pics of that (and whatever becomes of them) to this post.

Pics of the fallen tree and damaged fence

Progress pics – a fun day or two of chainsawing and throwing logs around…

Bringing things home – mostly firewood but a few big sections…

All cleaned up like new – the fence needed some new posts & staples but it’s now stock proof again. The stump and a section of trunk are left to keep bugs & critters happy:

Will add posts on progress when milling the trunk sections….

Hey Siri, manage my server…

Intro

I use Siri and Apple Homekit to automate some basic things – switching lights and heaters on/off, etc – and was wondering if there was some way I could use Siri to run tasks on my computers and servers at home.

Some googling showed me this was possible and also reasonably easy to set up – these are my notes on the process and some examples of what I’ve done with it so far.

Setup on iPhone

There’s a free Apple “Shortcuts” app for iPhones:

https://apps.apple.com/us/app/shortcuts/id915249334

which can perform a wide range of tasks, including – as of reasonably recently – the abiltiy to run scripts over SSH.

Open the Shortcuts App, click + and then Add action. These pics show the process from that point on:

Click on Add Action….

From here you fill out the details – the IP address of the remote computer, the user and password, and the path to the script you want to run.

Requirements

You need to have SSH setup and a working script you can run over SSH first.

On Ubuntu that means installing and configuring SSH as described here:

https://linuxize.com/post/how-to-enable-ssh-on-ubuntu-20-04/

On MacOS you need to enable Remote Login under Sharing here:

You also need a script that is executable as the user you are connecting with.

Obviously, be aware of the security risk of enabling tasks to be run remotely, etc.

Examples

Here are some I made earlier.

This one connects to my old Mac Pro (it runs Ubuntu) and runs a ‘shutdown’ script.

My /home/don/shutdown script simply contains “sudo init 0” and the ‘don‘ user is enabled for passwordless sudo.

and this one connects to the same host and powers on the attached monitor, that runs Firefox showing my CCTV/Zoneminder conosole:

The “/home/don/screenon” script contains this:

xset -display :0.0 dpms force on

and there’s a ‘screenoff’ that switches the display off when I don’t want it too.

For my iMac runnning MacOS I’ve added a shutdown script – useful when I don’t want to go and power it off manually.

I’ve ended up with a selection of shortcuts to power things on & off, and can now say “Hey Siri, CCTV on please“, or “Hey Siri, shutdown iMac please“, and Siri makes it so….

This setup enables me to run pretty much anything on a Linux or Mac host simply by asking Siri – it could trigger deployment pipelines, perform updates, start/stop/restart services…. anything you can put in a shell script.

If you have any interesting ideas or suggestions please let me know below.

Pin It on Pinterest