CarHunch – Vehicle Insights Platform

CarHunch Logo

Turning billions of MOT and accident records into real-time vehicle insights.

Visit the live project here:

www.carhunch.com


What CarHunch Does

  • Aggregates billions of MOT test results and STATS19 UK accident records.
  • Provides real-time analytics on vehicle makes, models, years, and conditions.
  • Compares a specific car against similar vehicles (make/model/year).
  • Highlights common MOT failures and safety risks for different vehicles.

How It Works

CarHunch is powered by a ClickHouse data warehouse for ultra-fast queries, with:

  • Python ETL pipelines for MOT and accident data ingestion.
  • Incremental updates from DVLA bulk & delta files.
  • Redis caching for instant lookups.
  • Machine learning (MiniLM embeddings + clustering) to spot defect patterns.
  • LLM integration (LLaMA) to generate natural-language insights.

Example Insights

“Your 2010 Ford Focus has a 28% higher MOT failure rate than average for similar cars, mainly due to suspension wear.”

“BMW 3 Series (2008–2012) commonly fail MOTs due to brake issues around 80,000 miles.”

“Motorcycles show a different pattern of MOT failures compared to cars, with lighting and tyre defects being most common.”

Technical Overview

CarHunch isn’t just about insights — it’s also a demonstration of building a modern, high-performance OLAP data platform from the ground up.

  • Database: ClickHouse OLAP warehouse for real-time analytics on billions of records.
  • ETL: Python pipelines ingesting DVLA MOT bulk/delta files and STATS19 accident datasets.
  • Data Modeling: Normalised vehicle/test/defect schema with indexing and partitioning for query performance.
  • APIs: REST endpoints (Flask/FastAPI) serving real-time queries to front-end applications.
  • Caching: Redis for ultra-fast repeated lookups.
  • Machine Learning: MiniLM embeddings + HDBSCAN clustering for identifying defect patterns and grouping similar vehicles.
  • LLM Integration: Local LLaMA models for natural-language explanations and summaries.
  • Deployment: Dockerised services on a Proxmox node, easily portable to cloud infrastructure.
  • Monitoring: Logging & system metrics (rsyslog, lm-sensors) for reliability and performance tracking.

Why CarHunch?

CarHunch shows how big data + AI can turn raw government datasets into meaningful insights that benefit both consumers and the automotive industry.

👉 Explore more at

CarHunch.com

CarHunch Screenshot

 
Get in touch
if you’d like to collaborate or learn more.


Discover more from Don's Blog

Subscribe to get the latest posts sent to your email.

Leave a Reply